I
N7/ amazon | Performance Scaling via Optimal Transport: _. w‘é,-'.\o.,

VIRGINIATECH - Enabling Data Selection from Partially Revealed Sources NEURAL INFORMATION

PROCESSING SYSTEMS )
N A
@@ RIEDS .. Feiyang Kang'*, Hoang Anh Just'*, Anit Kumar Sahu?, Ruoxi Jia' y NeurlPS | 2023 o v ouen

WVirginia Tech “Amazon Alexa Al

We approach practical data collection scenarios with multiple sources, where acquisition plans need to be made with only small samples.
We propose a handy toolkit, projektor, that predicts model performance, projects it onto larger scales, and optimizes over predictions.
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